AROUND G, a Self-Driving Indoor Guide Robot
AROUND G is an indoor self-driving guide robot. It drives autonomously in large-scale indoor spaces, such as shopping malls, airports, hotels, and so forth. When giving directions, it uses AR navigation technology installed in its main display to deliver location and route information in a vivid and immersive way.
AROUND G can self-drive smoothly without using an expensive laser scanner device. The key to this is the xDM Cloud of the AROUND Platform, and the deep reinforcement learning algorithm programmed in its main body.
The AROUND Platform is a solution that divides the fundamental functions required to achieve a self-driving robot into two parts, a mapping robot, and the xDM Cloud. Firstly, the mapping robot, M1, drives autonomously around indoor spaces to collect spatial data and, then, uploads the collected map data to the xDM Cloud. After this, the service robot utilizes the data processed in the cloud, such as map data, visual localization, path planning, and so on, to drive autonomously.
An obstacle avoidance algorithm based on deep reinforcement learning is applied to the robot’s main body. It responds smoothly to spontaneous events which may occur while giving directions. That is to say, this robot can move smoothly to a destination while naturally avoiding pedestrians and other various obstacles that do not exist in the map.
Our goal is to establish the use of self-driving service robots in the mainstream. We will be able to more quickly bring about a time where we can see a range of useful self-driving service robots in our daily lives, if we could continue to reduce the production costs of self-driving technology by eliminating expensive laser scanners.